QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions
نویسندگان
چکیده
Increasing scarcity of irrigation water is a major threat to sustainable production of cotton (Gossypium hirsutum L.). Identifying genomic regions contributing to abiotic stress tolerance will help develop cotton cultivars suitable for water-limited regions through molecular marker-assisted breeding. A molecular mapping F2 population was derived from an intraspecific cross of the drought sensitive G. hirsutum cv. FH-901 and drought tolerant G. hirsutum cv. RH-510. Field data were recorded on physiological traits (osmotic potential and osmotic adjustment); yield and its component traits (seedcotton yield, number of bolls/plant and boll weight); and plant architecture traits (plant height and number of nodes per plant) for F2, F2:3 and F2:4 generations under well-watered versus water-limited growth conditions. The two parents were surveyed for polymorphism using 6500 SSR primer pairs. Joinmap3.0 software was used to construct linkage map with 64 polymorphic markers and it resulted into 35 markers mapped on 12 linkage groups. QTL analysis was performed by composite interval mapping (CIM) using QTL Cartographer2.5 software. In total, 7 QTLs (osmotic potential 2, osmotic adjustment 1, seedcotton yield 1, number of bolls/plant 1, boll weight 1 and plant height 1) were identified. There were three QTLs (qtlOP-2, qtlOA-1, and qtlPH-1) detected only in water-limited conditions. Two QTLs (qtlSC-1 and qtlBW-1) were detected for relative values. Two QTLs (qtlOP-1 and qtlBN-1) were detected for well-watered treatment. Significant QTLs detected in this study can be employed in MAS for molecular breeding programs aiming at developing drought tolerant cotton cultivars.
منابع مشابه
Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits.
Quantitative trait loci (QTLs) for yield and drought-related traits were exchanged via marker-assisted selection between elite cultivars of two cotton species, Gossypium barbadense (GB) cv. F-177 and Gossypium hirsutum (GH) cv. Siv'on. Three of the resultant near-isogenic lines (NILs), each introgressed with a different QTL region, expressed an advantage in osmotic adjustment (OA) and other dro...
متن کاملField-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton.
The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotto...
متن کاملMultivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture
To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the po...
متن کاملEvaluation of Genetic Variations in Iranian Confectionery Sunflower Landraces (Helianthus annuus L.) under Various Water Treatment Conditions
Abstract In order to evaluate morpho-physiological traits of confectionery sunflower under different irrigation regimes, an experiment was carried out under field conditions in Agricultural Research Center of West-Azerbaijan province, Urmia, Iran in 2012. Fifty six confectionery sunflower landraces were arranged in 7 × 8 rectangular lattice design with two replications in each one of well-wat...
متن کاملOsmotic Adjustment in Cotton (Gossypium hirsutum L.) Leaves and Roots in Response to Water Stress.
The relative magnitude of adjustment in osmotic potential (psi(s)) of water-stressed cotton (Gossypium hirsutum L.) leaves and roots was studied using plants raised in pots of sand and grown in a growth chamber. One and three water-stress preconditioning cycles were imposed by withholding water, and the subsequent adjustment in solute potential upon relief of the stress and complete rehydration...
متن کامل